Karlsruhe – Selbstheilende Materialien können Schäden wie Kratzer, Risse oder Dellen selbständig reparieren und ihre ursprüngliche Gestalt wieder annehmen. Dafür müssen sie aus mehreren Komponenten zusammengesetzt werden, deren kombinierte Eigenschaften zu den gewünschten Eigenschaften führen. Wissenschaftler des Karlsruher Instituts für Technologie (KIT) und am Technion – Israel Institute of Technology haben jetzt entdeckt, dass auch winzige Partikel aus reinem Gold über erstaunliche Selbstheilungsfähigkeiten verfügen.
Werkstoffe mit Formgedächtnis auszustatten, ist eine sehr umständliche und mühsame Arbeit. Bei reinen Metallen galten Selbstheilungskräfte, die mechanisch verursachte Schäden reparieren, bislang als unmöglich. Solche haben die Forscher aber jetzt bei reinem Gold beobachtet. Das berichten sie in der Fachzeitschrift Advanced Science.
„Bislang hat man sich bei der Suche nach solchen Werkstoffen auf Kunststoffe aus vielen Bestandteilen und komplizierten Strukturen konzentriert“, konstatiert Christian Brandl am Institut für Angewandte Materialien – Werkstoff- und Biomechanik (IAM-WBM). Deren Selbstheilungskräfte basierten allesamt auf der kollektiven Umwandlung der Phasen eines oder mehrerer Stoffe, aus denen sie zusammengesetzt sind. Etwa durch Erhitzen, Schmelzen oder Fällung, wobei sich die Materialeigenschaften ändern können. Bei Metalllegierungen beruht der Formgedächtniseffekt auf dem Phänomen, dass sie in zwei unterschiedlichen Kristallstrukturen existieren können, die von einer bestimmten Temperatur abhängen. Verändert sich diese „erinnern“ sich die Metalle an ihre frühere Formgebung, die sie bei der jeweiligen Temperatur innehatten. Der Selbstheilungseffekt ist weder bei den Verbundstoffen, noch den Legierungen jemals vollständig.
Eine Selbstheilung beziehungsweise ein Formgedächtnis von reinen Metallen, war bislang gänzlich unbekannt. Genau das hat eine internationale Forschergruppe um Dr. Christian Brandl am (KIT) und Eugen Rabkin am Technion – Israel Institute of Technology aber jetzt bei Goldpartikeln beobachtet. Die vielgestaltigen Partikel nahmen dabei nahezu vollständig ihre individuelle ursprüngliche Form wieder an. Irgendeine Verformung gab es nicht. „Das faszinierendste dabei ist, dass die wiederhergestellten Partikelformen nicht der mit der geringsten Oberflächenenergie entsprachen, was zu erwarten gewesen wäre“, sagt Brandl.
Zunächst in Simulationen in Hochleistungsrechnern und dann real mit der Messspitze eines Rasterkraftmikroskops hatten die Forscher den Partikeln mechanische Schäden beigebracht. Sie stellten fest, dass sich durch Ausglühen bei Temperaturen weit unterhalb der Schmelztemperatur von Gold Goldatome entlang von Oberflächenstufen zurück in die Dellen bewegen und diese fast vollständig wieder auffüllten. Solche Oberflächenstufen treten in vielen verformten Metallen auf. Deshalb rechnet Brandl damit, dass auch andere Metalle über die beobachteten Selbstheilungseigenschaften verfügen. Die Forscher rechnen damit, dass mithilfe ihrer Ergebnisse, robuste Bauteile für Strukturen kleiner als ein tausendstel Millimeter konstruiert werden können.
Videobeschreibung: Das Video zeigt, wie sich in der Molekulardynamik-Simulation beim Erhitzen die zuvor beigebrachte Verformung (Delle) durch zufällige Bewegungen der Goldatome (sogenannte Diffusion) in die Ausgangsform langsam ausheilt. Die Atome sind entsprechend ihrer Höhe eingefärbt. Im kleineren Fenster sind die Atome am dunkelsten, die sich am weitesten bewegt haben, und zeigen, dass sich die Atome entlang der Oberflächenstufen bewegen.